

Motivation

- 1. Event cameras offer many advantages over standard cameras due to their distinctive principle of operation: Low power High temporal resolution
 - Low latency
- High dynamic range
- 2. Many downstream visual applications hinges on an efficient & effective scene representation, where Neural Radiance Field (NeRF) is seen as the leading candidate

Research Question

How to robustly reconstruct a NeRF from a moving event camera under general real-world conditions?

Limitations of Prior Work

- 1. Depends on a temporally dense & low-noise event stream
- 2. Does not directly & effectively generalize to arbitrary contrast threshold values & camera speed profiles

(a) Dense and low-noise events (left), and their projection onto the xy-image plane (right).

(c) Sparse and noisy events (left), and their projection onto the xy-image plane (right).

(b) Uniform-speed camera motion.

(d) Non-uniform-speed camera motion.

Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion Weng Fei Low Gim Hee Lee

Proposed Method: Robust e-NeRF

Event Generation Model

- Measured log-radiance difference:
- Reference log-radiance timestamp:
- **1.** Intrinsic parameters: Time-independent, asymmetric Contrast Threshold C_p Refractory Period τ (*i.e.* pixel dead-time \rightarrow sparsity)
- **2.** Non-idealities: Pixel-to-pixel contrast threshold variation σ_{C_n} (*i.e.* noise)

Training Pipeline

- speed profiles & intrinsic parameter values, without such prior knowledge
- Does not involve accumulation of successive events, thereby reconstructions are detailed and robust to event sparsity & noise

Gamma Correction of Synthesized Views

Affine-corrected log-radiance prediction: Gamma-corrected linear-radiance prediction:

✤ e is an Event generated by pixel u, with polarity $p \in \{-1, +1\}$, at timestamp t_{curr} $\Delta \log L := \log L(\boldsymbol{u}, t_{curr}) - \log L(\boldsymbol{u}, t_{ref}) = pC_p$

 $t_{ref} = t_{prev} + \tau$

 t_{prev} is the previous event timestamp at \boldsymbol{u}

 $\log \hat{\boldsymbol{L}}_{corr} = \boldsymbol{a} \odot \log \hat{\boldsymbol{L}} + \boldsymbol{b}$ $\hat{\boldsymbol{L}}_{corr} = (\exp \boldsymbol{b}) \, \hat{\boldsymbol{L}}^{\circ \boldsymbol{a}}$

Novel View Synthesis Results

Method		$v = 1 \times$			$v_b = 8 \times$		$v = \frac{1}{2} \times$				$v = 8 \times$		
	PSNR ↑	SSIM ↑	LPIPS	\downarrow PSNR \sim	► SSIM ↑	LPIPS↓	PSNR ↑	ssim ↑	LPIPS	\downarrow PSNR	↑ SSIM ⁻	LPIPS ↓	
E2VID + NeRF	18.92	0.832	0.316	18.92	0.832	0.316	18.92	0.832	0.316	5 18.92	2 0.832	0.316	
Ev-NeRF	27.72	0.935	0.087	26.25	0.926	0.102	19.79	0.792	0.326	5 20.83	3 0.862	0.198	
Robust <i>e</i> -NeRF	28.19	0.945	0.057	28.19	0.945	0.057	28.19	0.945	0.057	28.19	0.945	0.057	
Method	Opt.	$\sigma_{C_p} = 0.$		= 0.00	.00		$\sigma_{C_p} = 0.03$			$\sigma_{C_p} = 0.06$			
	C_p	PSNR ²	↑ SSIN	M↑ LPII	PS↓	PSNR ↑	SSIM ↑	LPIPS ↓		PSNR ↑	SSIM ↑	LPIPS \downarrow	
E2VID + NeRF	—	18.92	0.8	32 0.3	16	18.68	0.827	0.330		18.03	0.808	0.363	
Ev-NeRF	×	27.43	0.9.	$ \begin{array}{ccc} 5 & 0.0 \\ 11 & 0.1 \end{array} $	87 23	24.42 23.66	0.895	0.155		8.07 15.43	0.841	0.260	
Debust NDD	×	28.19	0.945 0.		57	28.14	0.946	0.058		28.23	0.947	0.057	
KODUSI <i>e</i> -mekr	\checkmark	28.17	0.94	46 0.0	51	27.91	0.946	0.054		28.19	0.948	0.049	
Method	Opt.	Opt $\tau =$		$\tau = 0ms$	= 0 <i>ms</i>		au = 8ms			au = 25ms			
	C_p	τ P	SNR ↑	SSIM ↑	LPIPS \downarrow	PSNR ⁻	↑ SSIM ⁻	t LPIPS	5↓	PSNR ↑	SSIM ↑	LPIPS ↓	
E2VID + NeRF	_	_	18.92	0.832	0.316	14.87	0.797	0.42	7	14.15	0.791	0.467	
Ev-NeRF	×	—	27.72	0.935	0.087	13.17	0.707	0.55	9	12.75	0.759	0.528	
	\checkmark	_ ×	27.43 28 19	0.911	0.123	13.56 26 30	0.716	0.52	8 6	13.75 25 51	0.717	0.569	
Robust <i>e</i> -NeRF	×	\checkmark	28.18	0.945	0.057	23.43	0.910	0.00	0	22.48	0.895	0.105	
Method E2VID + NeRF Ev-NeRF	Opt. C_p - \times \checkmark \times	Opt. $\frac{v_b}{PS}$ τ $\frac{1}{PS}$ - $1 2 2\times 2$	$= 1 \times, \sigma_{0}$ $NR \uparrow S$ 8.92 7.72 7.43 8.19	$C_p = 0.00, \tau$ SSIM \uparrow L 0.832 0.935 0.911 0.945	F = 0ms $PIPS \downarrow$ 0.316 0.087 0.123 0.057	$ \frac{v_b = 4 \times 0}{\text{PSNR}} $ 14.98 12.33 13.06 24.10	$\sigma_{C_p} = 0.0$ SSIM \uparrow 0.796 0.742 0.732 0.913		$\frac{ns}{\downarrow}$	$\frac{v_b = 8 \times, \sigma_b}{\text{PSNR} \uparrow}$ $\frac{14.07}{12.05}$ 12.27 23.51	$C_p = 0.06,$ SSIM \uparrow 0.801 0.807 0.772 0.900	τ = 25ms LPIPS ↓ 0.448 0.425 0.539 0.110	
Robust <i>e</i> -NeRF	\checkmark	√ 2	8.19	0.946	0.051	20.42	0.875	0.126		18.83	0.836	0.197	
E2VID + NeRF	l×		$\sigma_{C_p} = 0$	0.06 v	$\sigma_b = 8 \times, \sigma_b$	$c_p = 0.06, \tau$	= 25 <i>ms</i> r	nocap-1	d-tra	ns	mocap-d	esk2	
Ev-NeRF									STARL				
urs)						3							

