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(c) Sparse and noisy events (left), and their
projection onto the !"-image plane (right).

(a) Dense and low-noise events (left), and their
projection onto the !"-image plane (right).
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v = 1⇥ vb = 8⇥ v = 1
8⇥ v = 8⇥

Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 18.92 0.832 0.316 18.92 0.832 0.316 18.92 0.832 0.316 18.92 0.832 0.316
Ev-NeRF 27.72 0.935 0.087 26.25 0.926 0.102 19.79 0.792 0.326 20.83 0.862 0.198
Robust e-NeRF 28.19 0.945 0.057 28.19 0.945 0.057 28.19 0.945 0.057 28.19 0.945 0.057

Table 1. Effect of speed profile. v denotes the speed of motion relative to the default hemi-/spherical spiral motion with uniform azimuth
speed, whereas vb denotes the oscillation factor of the relative speed of motion (i.e. v = vb

sin 2⇡ft, f = 1Hz ).

�Cp = 0.00 �Cp = 0.03 �Cp = 0.06
Method Opt.

Cp PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � 18.92 0.832 0.316 18.68 0.827 0.330 18.03 0.808 0.363
⇥ 27.72 0.935 0.087 24.42 0.895 0.155 8.07 0.841 0.260Ev-NeRF X 27.43 0.911 0.123 23.66 0.826 0.261 15.43 0.708 0.441
⇥ 28.19 0.945 0.057 28.14 0.946 0.058 28.23 0.947 0.057Robust e-NeRF X 28.17 0.946 0.051 27.91 0.946 0.054 28.19 0.948 0.049

Table 2. Effect of pixel-to-pixel threshold variation �Cp . “Opt. Cp” refers to jointly optimizing thresholds Cp with NeRF parameters ⇥.

⌧ = 0ms ⌧ = 8ms ⌧ = 25ms

Method Opt.
Cp

Opt.
⌧ PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � � 18.92 0.832 0.316 14.87 0.797 0.427 14.15 0.791 0.467
⇥ � 27.72 0.935 0.087 13.17 0.707 0.559 12.75 0.759 0.528Ev-NeRF X � 27.43 0.911 0.123 13.56 0.716 0.528 13.75 0.717 0.569
⇥ ⇥ 28.19 0.945 0.057 26.30 0.934 0.066 25.51 0.929 0.072Robust e-NeRF ⇥ X 28.18 0.945 0.052 23.43 0.910 0.090 22.48 0.895 0.105

Table 3. Effect of refractory period ⌧ . “Opt. ⌧” refers to jointly optimizing refractory period ⌧ with NeRF parameters ⇥.

vb = 1⇥,�Cp = 0.00, ⌧ = 0ms vb = 4⇥,�Cp = 0.03, ⌧ = 8ms vb = 8⇥,�Cp = 0.06, ⌧ = 25ms
Method Opt.

Cp

Opt.
⌧ PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � � 18.92 0.832 0.316 14.98 0.796 0.433 14.07 0.801 0.448
⇥ � 27.72 0.935 0.087 12.33 0.742 0.521 12.05 0.807 0.425Ev-NeRF X � 27.43 0.911 0.123 13.06 0.732 0.539 12.27 0.772 0.539
⇥ ⇥ 28.19 0.945 0.057 24.10 0.913 0.086 23.51 0.900 0.110Robust e-NeRF X X 28.19 0.946 0.051 20.42 0.875 0.126 18.83 0.836 0.197

Table 4. Collective effect of speed profile, threshold variation and refractory period.

vb = 1⇥,�Cp = 0.00, ⌧ = 0ms vb = 4⇥,�Cp = 0.03, ⌧ = 8ms vb = 8⇥,�Cp = 0.06, ⌧ = 25ms

⌧ `grad PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

⇥ X 28.19 0.945 0.057 12.77 0.799 0.372 12.41 0.798 0.412
X ⇥ 27.96 0.943 0.063 23.15 0.899 0.113 22.21 0.879 0.153
X X 28.19 0.945 0.057 24.10 0.913 0.086 23.51 0.900 0.110

Table 5. Ablation studies on refractory period ⌧ modeling and target-normalized gradient loss `grad .

Effect of Pixel-to-Pixel Threshold Variation. To evalu-
ate the robustness of our method to noise, in the form of
threshold variation, we benchmark all works on three sets

of sequences. Furthermore, we also benchmark Ev-NeRF
and our method with jointly optimized contrast thresholds,
which are poorly initialized with C+1/C�1 = 10 (more
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normalized gradient loss `grad that directly and effectively
generalize to various real-world conditions. The weighted
sum of the two losses form the total training loss, which
is optimized on a batch of events Ebatch sampled randomly
from the raw, asynchronous event stream. Formally, the to-
tal training loss is given by:

L =
1

|Ebatch |
X

e2Ebatch

�di↵ `di↵ (e) + �grad`grad(e) , (5)

where �di↵ and �grad are the respective loss weights.
We specifically refrained from optimizing on a reduced

event stream, obtained by accumulating successive events
at each pixel over time intervals, as done in [41, 12, 18].
This enables us to account for the refractory period and pre-
vent unnecessary effective reduction in contrast sensitivity,
which leads to lower reconstruction fidelity. Moreover, it
can also be shown that event accumulation results in the ef-
fective amplification of threshold variation (proof in supple-
mentary materials), thereby reduction in noise robustness.

Threshold-Normalized Difference Loss. This loss en-
forces the mean contrast threshold C̄ = 1

2 (C�1 + C+1)
normalized squared consistency between the observed log-
radiance difference � logL = pCp from an event (Eq. 3)
and the predicted log-radiance difference � log L̂ :=
log L̂(u, tcurr ) � log L̂(u, tref ), given by renders from the
NeRF model (Eq. 1), as follows:

`di↵ (e) =

 
� log L̂� pCp

C̄

!2

. (6)

Note that when a color event camera is employed, L̂ refers
to the single-channel rendered radiance, where the color
channel is governed by the pixel color filter.

The loss serves as the primary reconstruction loss and
can be effectively interpreted as a squared percentage error,
especially under symmetric contrast thresholds. The nor-
malization entails that the loss is invariant to the common
scale of the positive and negative thresholds, as well as the
predicted log-radiance, and only dependent on their ratio.
Moreover, the normalization is optimal in the sense that the
magnitude of the normalized target |pCp/C̄| = Cp/C̄ is al-
ways centered at 1 regardless of the threshold ratio (proof
in supplementary materials). The loss can therefore effec-
tively generalize to arbitrary threshold values.

Unlike Ev-NeRF [12], these properties also enable the
joint optimization of the unknown contrast threshold with-
out additional regularization, as it does not suffer from any
degeneracy. However, only the contrast threshold ratio can
be recovered, thereby an additional scale ambiguity in the
predicted log radiance, as mentioned in Sec. 3.3.2. In ad-
dition, our experiments also demonstrate the viability of
jointly optimizing the refractory period ⌧ via tref (Eq. 4).

Target-Normalized Gradient Loss. This loss is sim-
ply the Absolute Percentage Error (APE) of the pre-
dicted log-radiance temporal gradient derived using auto-
differentiation @

@t log L̂(u, t), with respect to the finite dif-
ference approximation of the target log-radiance gradient
@
@t logL(u, t) ⇡ pCp

tcurr�tref
, at a timestamp tsam sampled

between tref and tcurr , as follows:

`grad(e) = APE

✓
@

@t
log L̂(u, tsam)

,

pCp

tcurr � tref

◆
(7)

where APE (ŷ, y) =
��� ŷ�y

y

���. As the finite difference ap-
proximation error is minimum at the midpoint and maxi-
mum at the endpoints, we sample tsam from a truncated
normal distribution that is centered at the midpoint and has
a standard deviation of 1/4 the interval.

The loss acts as a smoothness constraint for log-radiance
changes between tref and tcurr , which lack explicit regu-
larization from `di↵ . This is particularly important for the
effective reconstruction of textureless regions in the scene,
where events associated have comparably longer intervals.
In contrast to analogous regularization losses adopted in re-
cent works [41, 12, 18], `grad is specifically invariant to the
speed of motion, hence generalizable to arbitrary speed pro-
files. An unnormalized gradient loss would over-emphasize
events generated under high-speed motion, as they have rel-
atively larger target gradients. Furthermore, the loss is in-
variant to the common scale of the threshold and predicted
log-radiance, similar to `di↵ . It is therefore also able to
effectively generalize to arbitrary threshold values and fa-
cilitate joint optimization of unknown threshold.

3.4. Gamma Correction of Synthesized Views

As alluded in Sec. 3.3.2, the channel-consistent scale and
per-channel offset ambiguity in the predicted log-radiance
can be corrected for post-reconstruction, given a set of ref-
erence images of the same scene. To better account for
the likely mismatch of spectral sensitivity, thereby color
balance, between the event camera and the standard cam-
era used to capture the reference images. Akin to [41],
we further relax the channel-consistent scale to per-channel
scales. This entails an affine correction of the predicted log-
radiance, or equivalently a gamma correction of the pre-
dicted linear radiance, for each color channel as follows:

log L̂corr = a� log L̂+ b , (8)

where a and b are the correction parameters, is necessary
and sufficient for the reference alignment. Consequently,
given the target log-radiance logL from the reference im-
ages, the optimal correction parameters can be simply de-
rived via ordinary least squares.
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How to robustly reconstruct a NeRF from a moving event 

camera under general real-world conditions?

1. Event cameras offer many advantages over standard 

cameras due to their distinctive principle of operation:

2. Many downstream visual applications hinges on an 

efficient & effective scene representation, where Neural 

Radiance Field (NeRF) is seen as the leading candidate

Threshold-Normalized Difference Loss:

Target-Normalized Gradient Loss:

1. Depends on a temporally dense & low-noise event stream

2. Does not directly & effectively generalize to arbitrary 

contrast threshold values & camera speed profiles

v Low power

v Low latency

v High temporal resolution

v High dynamic range

v 𝒆 is an Event generated by pixel 𝒖, with 

polarity 𝑝 ∈ −1,+1 , at timestamp 𝑡!"##
v Measured log-radiance difference:

v Reference log-radiance timestamp:

𝑡$#%& is the previous event timestamp at 𝒖

Reconstructing Neural Radiance Fields. In general, vi-
sual reconstruction of neural scene representations, includ-
ing NeRFs, is achieved via Analysis-by-Synthesis. Nonethe-
less, NeRF derivatives mainly focus on the reconstruction
from dense [21, 4, 5] or sparse [26, 16] multi-view images,
possibly with depth maps [2, 3] or point clouds [40, 6, 39].

The reconstruction of NeRFs from events was first pro-
posed and investigated in Ev-NeRF [12], E-NeRF [18] and
EventNeRF [41]. E-NeRF also explored on using a combi-
nation of events and images for NeRF reconstruction. How-
ever, these works suffer from various limitations, as out-
lined in Sec. 1. Moreover, EventNeRF also relies on the
access to the analytic camera trajectory, in contrast to E-
NeRF and our work which only require constant-rate cam-
era poses. Furthermore, inconsistent sets of loss functions
and hyper-parameters were also adopted across different
scenes in E-NeRF. In addition, E-NeRF with normalized
and no-event losses also requires the contrast threshold to
be known as a priori, which is hard to achieve in practice.

3. Our Method

We first briefly introduce the Neural Radiance Field
(NeRF) scene representation (Sec. 3.1) . Next, we detail the
event generation model (Sec. 3.2) and normalized training
losses (Sec. 3.3) proposed to robustly reconstruct NeRFs
from event cameras. Lastly, we describe a Gamma Correc-
tion-based approach to align the radiance levels of the syn-
thesized views to a set of given reference views (Sec. 3.4).

3.1. Preliminaries: Neural Radiance Fields

Neural Radiance Field (NeRF) [24] represents a scene
using a Multi-Layer Perceptron (MLP) F⇥ : (x,d) 7!
(c,�) that maps 3D position x = (x, y, z) and 2D viewing
direction d = (✓,�) to its corresponding directional emitted
radiance, or simply color, c = (r, g, b) and volume density
�. From this representation, the estimated incident radiance
L̂ at a given pixel u can be computed using the volume ren-
dering equation with quadrature [46], as follows:

L̂(u) =
NX
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Ti(1� exp(��i�i))ci ,
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where �i and ci are the volume density and emitted radi-
ance, respectively, of a sample xi along the back-projected
ray through the pixel, which has direction d from the cam-
era center o. The sample xi = o + sid has a distance si
from the camera center and a distance of �i = si+1 � si
between its adjacent sample xi+1.

Figure 2. Event generation model. An event e of polarity p is
generated at timestamp tcurr when the difference in log-radiance
logL at a pixel u, measured with respect to a reference logL at
timestamp tref , has the same sign as p and a magnitude that equals
to the contrast threshold associated to polarity p, Cp. Red, down-
wards and blue, upwards arrows represent events of polarities �1
and +1, respectively, and each right-angled dashed line represents
the measured change in logL. After an event is generated, the
pixel will be temporarily deactivated for an amount of time given
by the refractory period ⌧ , as shaded in the figure. Thus, tref is
simply the sum of the previous event timestamp tprev and ⌧ .

3.2. Event Generation Model

Fig. 2 shows the illustration of the event generation
model. An event camera responds to log-radiance changes
in the scene and outputs an Event Stream E , given by:

E = { e | e = (u, p, tprev , tcurr ) } , (2)

where e is an Event generated by pixel u, with polarity
p 2 {�1,+1}, at timestamp tcurr . For convenience of dis-
cussion, we augment each event with the timestamp of the
previous event that was generated by the same pixel, tprev .

An event of polarity p is generated when the difference in
log-radiance at a pixel, measured with respect to a reference
log-radiance at timestamp tref , has the same sign as p and a
magnitude that equals to the Contrast Threshold associated
to polarity p, Cp [9]. In short, the condition is given by:

� logL := logL(u, tcurr )� logL(u, tref ) = pCp , (3)

where L denotes the incident radiance at the given pixel
and timestamp. For color event cameras, L corresponds to
the radiance of the incident light after passing through the
specific color filter in front of the pixel.

After an event is generated, the pixel will be deactivated
for an amount of time specified by the Refractory Period
⌧ . During this period of time, the pixel is invariant to any
change in log-radiance and thus will not generate any new
events. At the end of the refractory period, the pixel will be
reactivated and the current log-radiance value at the pixel
will be set as the new reference value, enabling the next
event to be generated at this pixel [9, 19]. In essence:

tref = tprev + ⌧ . (4)
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v = 1⇥ vb = 8⇥ v = 1
8⇥ v = 8⇥

Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 18.92 0.832 0.316 18.92 0.832 0.316 18.92 0.832 0.316 18.92 0.832 0.316
Ev-NeRF 27.72 0.935 0.087 26.25 0.926 0.102 19.79 0.792 0.326 20.83 0.862 0.198
Robust e-NeRF 28.19 0.945 0.057 28.19 0.945 0.057 28.19 0.945 0.057 28.19 0.945 0.057

Table 1. Effect of speed profile. v denotes the speed of motion relative to the default hemi-/spherical spiral motion with uniform azimuth
speed, whereas vb denotes the oscillation factor of the relative speed of motion (i.e. v = vb

sin 2⇡ft, f = 1Hz ).

�Cp = 0.00 �Cp = 0.03 �Cp = 0.06
Method Opt.

Cp PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � 18.92 0.832 0.316 18.68 0.827 0.330 18.03 0.808 0.363
⇥ 27.72 0.935 0.087 24.42 0.895 0.155 8.07 0.841 0.260Ev-NeRF X 27.43 0.911 0.123 23.66 0.826 0.261 15.43 0.708 0.441
⇥ 28.19 0.945 0.057 28.14 0.946 0.058 28.23 0.947 0.057Robust e-NeRF X 28.17 0.946 0.051 27.91 0.946 0.054 28.19 0.948 0.049

Table 2. Effect of pixel-to-pixel threshold variation �Cp . “Opt. Cp” refers to jointly optimizing thresholds Cp with NeRF parameters ⇥.

⌧ = 0ms ⌧ = 8ms ⌧ = 25ms

Method Opt.
Cp

Opt.
⌧ PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � � 18.92 0.832 0.316 14.87 0.797 0.427 14.15 0.791 0.467
⇥ � 27.72 0.935 0.087 13.17 0.707 0.559 12.75 0.759 0.528Ev-NeRF X � 27.43 0.911 0.123 13.56 0.716 0.528 13.75 0.717 0.569
⇥ ⇥ 28.19 0.945 0.057 26.30 0.934 0.066 25.51 0.929 0.072Robust e-NeRF ⇥ X 28.18 0.945 0.052 23.43 0.910 0.090 22.48 0.895 0.105

Table 3. Effect of refractory period ⌧ . “Opt. ⌧” refers to jointly optimizing refractory period ⌧ with NeRF parameters ⇥.

vb = 1⇥,�Cp = 0.00, ⌧ = 0ms vb = 4⇥,�Cp = 0.03, ⌧ = 8ms vb = 8⇥,�Cp = 0.06, ⌧ = 25ms
Method Opt.

Cp

Opt.
⌧ PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � � 18.92 0.832 0.316 14.98 0.796 0.433 14.07 0.801 0.448
⇥ � 27.72 0.935 0.087 12.33 0.742 0.521 12.05 0.807 0.425Ev-NeRF X � 27.43 0.911 0.123 13.06 0.732 0.539 12.27 0.772 0.539
⇥ ⇥ 28.19 0.945 0.057 24.10 0.913 0.086 23.51 0.900 0.110Robust e-NeRF X X 28.19 0.946 0.051 20.42 0.875 0.126 18.83 0.836 0.197

Table 4. Collective effect of speed profile, threshold variation and refractory period.

vb = 1⇥,�Cp = 0.00, ⌧ = 0ms vb = 4⇥,�Cp = 0.03, ⌧ = 8ms vb = 8⇥,�Cp = 0.06, ⌧ = 25ms

⌧ `grad PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

⇥ X 28.19 0.945 0.057 12.77 0.799 0.372 12.41 0.798 0.412
X ⇥ 27.96 0.943 0.063 23.15 0.899 0.113 22.21 0.879 0.153
X X 28.19 0.945 0.057 24.10 0.913 0.086 23.51 0.900 0.110

Table 5. Ablation studies on refractory period ⌧ modeling and target-normalized gradient loss `grad .

Effect of Pixel-to-Pixel Threshold Variation. To evalu-
ate the robustness of our method to noise, in the form of
threshold variation, we benchmark all works on three sets

of sequences. Furthermore, we also benchmark Ev-NeRF
and our method with jointly optimized contrast thresholds,
which are poorly initialized with C+1/C�1 = 10 (more
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sum of the two losses form the total training loss, which
is optimized on a batch of events Ebatch sampled randomly
from the raw, asynchronous event stream. Formally, the to-
tal training loss is given by:

L =
1

|Ebatch |
X

e2Ebatch

�di↵ `di↵ (e) + �grad`grad(e) , (5)

where �di↵ and �grad are the respective loss weights.
We specifically refrained from optimizing on a reduced

event stream, obtained by accumulating successive events
at each pixel over time intervals, as done in [45, 13, 20].
This enables us to account for the refractory period and pre-
vent unnecessary effective reduction in contrast sensitivity,
which leads to lower reconstruction fidelity. Moreover, it
can also be shown that event accumulation results in the ef-
fective amplification of threshold variation (proof in supple-
mentary materials), thereby reduction in noise robustness.

Threshold-Normalized Difference Loss. This loss en-
forces the mean contrast threshold C̄ = 1

2 (C�1 + C+1)
normalized squared consistency between the observed log-
radiance difference � logL = pCp from an event (Eq. 3)
and the predicted log-radiance difference � log L̂ :=
log L̂(u, tcurr ) � log L̂(u, tref ), given by renders from the
NeRF model (Eq. 1), as follows:

`di↵ (e) =

 
� log L̂� pCp

C̄

!2

. (6)

Note that when a color event camera is employed, L̂ refers
to the single-channel rendered radiance, where the color
channel is governed by the pixel color filter.

The loss serves as the primary reconstruction loss and
can be effectively interpreted as a squared percentage error,
especially under symmetric contrast thresholds. The nor-
malization entails that the loss is invariant to the common
scale of the positive and negative thresholds, as well as the
predicted log-radiance, and only dependent on their ratio.
Moreover, the normalization is optimal in the sense that the
magnitude of the normalized target |pCp/C̄| = Cp/C̄ is al-
ways centered at 1 regardless of the threshold ratio (proof
in supplementary materials). The loss can therefore effec-
tively generalize to arbitrary threshold values.

Unlike Ev-NeRF [13], these properties also enable the
joint optimization of the unknown contrast threshold with-
out additional regularization, as it does not suffer from any
degeneracy. However, only the contrast threshold ratio can
be recovered, thereby an additional scale ambiguity in the
predicted log radiance, as mentioned in Sec. 3.3.2. In ad-
dition, our experiments also demonstrate the viability of
jointly optimizing the refractory period ⌧ via tref (Eq. 4).

Target-Normalized Gradient Loss. This loss is sim-
ply the Absolute Percentage Error (APE) of the pre-
dicted log-radiance temporal gradient derived using auto-
differentiation @

@t log L̂(u, t), with respect to the finite dif-
ference approximation of the target log-radiance gradient
@
@t logL(u, t) ⇡ pCp

tcurr�tref
, at a timestamp tsam sampled

between tref and tcurr , as follows:

`grad(e) = APE

✓
@

@t
log L̂(u, tsam)

,

pCp

tcurr � tref

◆
(7)

where APE (ŷ, y) =
��� ŷ�y

y

���. As the finite difference ap-
proximation error is minimum at the midpoint and maxi-
mum at the endpoints, we sample tsam from a truncated
normal distribution that is centered at the midpoint and has
a standard deviation of 1/4 the interval.

The loss acts as a smoothness constraint for log-radiance
changes between tref and tcurr , which lack explicit regu-
larization from `di↵ . This is particularly important for the
effective reconstruction of textureless regions in the scene,
where events associated have comparably longer intervals.
In contrast to analogous regularization losses adopted in re-
cent works [45, 13, 20], `grad is specifically invariant to the
speed of motion, hence generalizable to arbitrary speed pro-
files. An unnormalized gradient loss would over-emphasize
events generated under high-speed motion, as they have rel-
atively larger target gradients. Furthermore, the loss is in-
variant to the common scale of the threshold and predicted
log-radiance, similar to `di↵ . It is therefore also able to
effectively generalize to arbitrary threshold values and fa-
cilitate joint optimization of unknown threshold.

3.4. Gamma Correction of Synthesized Views

As alluded in Sec. 3.3.2, the channel-consistent scale and
per-channel offset ambiguity in the predicted log-radiance
can be corrected for post-reconstruction, given a set of ref-
erence images of the same scene. To better account for
the likely mismatch of spectral sensitivity, thereby color
balance, between the event camera and the standard cam-
era used to capture the reference images. Akin to [45],
we further relax the channel-consistent scale to per-channel
scales. This entails an affine correction of the predicted log-
radiance, or equivalently a gamma correction of the pre-
dicted linear radiance, for each color channel as follows:

log L̂corr = a� log L̂+ b , (8)

where a and b are the correction parameters, is necessary
and sufficient for the reference alignment. Consequently,
given the target log-radiance logL from the reference im-
ages, the optimal correction parameters can be simply de-
rived via ordinary least squares.
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scales. This entails an affine correction of the predicted log-
radiance, or equivalently a gamma correction of the pre-
dicted linear radiance, for each color channel as follows:

log L̂corr = a� log L̂+ b , (8)

where a and b are the correction parameters, is necessary
and sufficient for the reference alignment. Consequently,
given the target log-radiance logL from the reference im-
ages, the optimal correction parameters can be simply de-
rived via ordinary least squares.

sum of the two losses form the total training loss, which
is optimized on a batch of events Ebatch sampled randomly
from the raw, asynchronous event stream. Formally, the to-
tal training loss is given by:

L =
1

|Ebatch |
X

e2Ebatch

�di↵ `di↵ (e) + �grad`grad(e) , (5)

where �di↵ and �grad are the respective loss weights.
We specifically refrained from optimizing on a reduced

event stream, obtained by accumulating successive events
at each pixel over time intervals, as done in [45, 13, 20].
This enables us to account for the refractory period and pre-
vent unnecessary effective reduction in contrast sensitivity,
which leads to lower reconstruction fidelity. Moreover, it
can also be shown that event accumulation results in the ef-
fective amplification of threshold variation (proof in supple-
mentary materials), thereby reduction in noise robustness.

Threshold-Normalized Difference Loss. This loss en-
forces the mean contrast threshold C̄ = 1

2 (C�1 + C+1)
normalized squared consistency between the observed log-
radiance difference � logL = pCp from an event (Eq. 3)
and the predicted log-radiance difference � log L̂ :=
log L̂(u, tcurr ) � log L̂(u, tref ), given by renders from the
NeRF model (Eq. 1), as follows:

`di↵ (e) =

 
� log L̂� pCp

C̄

!2

. (6)

Note that when a color event camera is employed, L̂ refers
to the single-channel rendered radiance, where the color
channel is governed by the pixel color filter.

The loss serves as the primary reconstruction loss and
can be effectively interpreted as a squared percentage error,
especially under symmetric contrast thresholds. The nor-
malization entails that the loss is invariant to the common
scale of the positive and negative thresholds, as well as the
predicted log-radiance, and only dependent on their ratio.
Moreover, the normalization is optimal in the sense that the
magnitude of the normalized target |pCp/C̄| = Cp/C̄ is al-
ways centered at 1 regardless of the threshold ratio (proof
in supplementary materials). The loss can therefore effec-
tively generalize to arbitrary threshold values.

Unlike Ev-NeRF [13], these properties also enable the
joint optimization of the unknown contrast threshold with-
out additional regularization, as it does not suffer from any
degeneracy. However, only the contrast threshold ratio can
be recovered, thereby an additional scale ambiguity in the
predicted log radiance, as mentioned in Sec. 3.3.2. In ad-
dition, our experiments also demonstrate the viability of
jointly optimizing the refractory period ⌧ via tref (Eq. 4).

Target-Normalized Gradient Loss. This loss is sim-
ply the Absolute Percentage Error (APE) of the pre-
dicted log-radiance temporal gradient derived using auto-
differentiation @

@t log L̂(u, t), with respect to the finite dif-
ference approximation of the target log-radiance gradient
@
@t logL(u, t) ⇡ pCp

tcurr�tref
, at a timestamp tsam sampled

between tref and tcurr , as follows:

`grad(e) = APE

✓
@

@t
log L̂(u, tsam)

,

pCp

tcurr � tref

◆
(7)

where APE (ŷ, y) =
��� ŷ�y

y

���. As the finite difference ap-
proximation error is minimum at the midpoint and maxi-
mum at the endpoints, we sample tsam from a truncated
normal distribution that is centered at the midpoint and has
a standard deviation of 1/4 the interval.

The loss acts as a smoothness constraint for log-radiance
changes between tref and tcurr , which lack explicit regu-
larization from `di↵ . This is particularly important for the
effective reconstruction of textureless regions in the scene,
where events associated have comparably longer intervals.
In contrast to analogous regularization losses adopted in re-
cent works [45, 13, 20], `grad is specifically invariant to the
speed of motion, hence generalizable to arbitrary speed pro-
files. An unnormalized gradient loss would over-emphasize
events generated under high-speed motion, as they have rel-
atively larger target gradients. Furthermore, the loss is in-
variant to the common scale of the threshold and predicted
log-radiance, similar to `di↵ . It is therefore also able to
effectively generalize to arbitrary threshold values and fa-
cilitate joint optimization of unknown threshold.

3.4. Gamma Correction of Synthesized Views

As alluded in Sec. 3.3.2, the channel-consistent scale and
per-channel offset ambiguity in the predicted log-radiance
can be corrected for post-reconstruction, given a set of ref-
erence images of the same scene. To better account for
the likely mismatch of spectral sensitivity, thereby color
balance, between the event camera and the standard cam-
era used to capture the reference images. Akin to [45],
we further relax the channel-consistent scale to per-channel
scales. This entails an affine correction of the predicted log-
radiance, or equivalently a gamma correction of the pre-
dicted linear radiance, for each color channel as follows:

log L̂corr = a� log L̂+ b , (8)

where a and b are the correction parameters, is necessary
and sufficient for the reference alignment. Consequently,
given the target log-radiance logL from the reference im-
ages, the optimal correction parameters can be simply de-
rived via ordinary least squares.

L̂corr = (exp b) L̂�a , (9)


