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Table 1: Upper bound perfor-
mance without event motion blur

Method PSNR " SSIM " LPIPS #

E2VID + NeRF 19.49 0.847 0.268

Robust e-NeRF 28.48 0.944 0.054

Deblur e-NeRF 29.43 0.953 0.043

Table 2: Quantitative results of the real exps.

08_peanuts_running 11_all_characters

Method
PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 14.85 0.690 0.595 13.12 0.695 0.627

Robust e-NeRF 18.00 0.677 0.507 15.91 0.677 0.552

Deblur e-NeRF 18.27 0.695 0.503 16.53 0.710 0.511

Table 3: Effect of camera speed. †Trained with 1/8⇥ the batch size of baselines.

v = 0.125⇥ v = 1⇥ v = 4⇥
Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 18.58 0.849 0.259 18.85 0.839 0.278 17.82 0.804 0.328
Robust e-NeRF 28.31 0.943 0.050 26.11 0.924 0.074 22.18 0.861 0.122
Deblur e-NeRF† 28.71 0.948 0.048 28.41 0.947 0.049 27.48 0.939 0.061

Table 4: Effect of scene illuminance. †Trained with 1/8⇥ the batch size of baselines.

Esc = 100 000lux Esc = 1 000lux Esc = 10lux

Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 19.27 0.846 0.268 18.85 0.839 0.278 17.24 0.804 0.354
Robust e-NeRF 27.62 0.942 0.055 26.11 0.924 0.074 22.72 0.870 0.129
Deblur e-NeRF† 28.73 0.948 0.047 28.41 0.947 0.049 28.62 0.935 0.059

Table 5: Collective effect of camera speed and scene illuminance. †Trained with 1/8⇥
the batch size of baselines.

v = 0.125⇥, Esc = 100 000lux v = 1⇥, Esc = 1 000lux v = 4⇥, Esc = 10lux

Method
Opt.

Cp & ⌧
Opt.

⌦ PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � � 19.19 0.844 0.281 18.85 0.839 0.278 15.37 0.799 0.436

⇥ � 28.27 0.944 0.057 26.11 0.924 0.074 18.42 0.814 0.255
Robust e-NeRF X � 28.28 0.944 0.051 26.31 0.923 0.075 18.51 0.812 0.254

⇥ ⇥ 29.00 0.950 0.043 28.41 0.947 0.049 26.15 0.904 0.134
Deblur e-NeRF

†
⇥ X 28.19 0.943 0.046 26.07 0.930 0.067 25.59 0.896 0.156

Effect of Camera Speed. To investigate the effect of event motion blur due
to high-speed camera motion, we evaluate all methods on 3 sets of sequences
simulated with camera speeds v that are 0.125⇥, 1⇥ & 4⇥ of the default setting,
respectively. As event motion blur may lead to a significant “loss or introduction
of events” (Sec. 1), we also quantify the average number of events relative to
that of its corresponding blur-free sequence, across all sequences in the set. This
translates to 93.36%, 100.95% & 95.21% for v = 0.125⇥, 1⇥ & 4⇥, respectively.

The quantitative results in Tab. 3 clearly underscores the significance of in-
corporating a pixel bandwidth model, as our method significantly outperforms
all baselines, especially under high-speed motion, despite being trained with
1/8⇥ the batch size of baselines. The results also display our robustness to event
motion blur, as our performance remains relatively unperturbed under varying
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Temperature and Parasitic Photocurrent Effects
in Dynamic Vision Sensors

Yuji Nozaki and Tobi Delbruck, Fellow, IEEE

Abstract— The effect of temperature and parasitic pho-
tocurrent on event-based dynamic vision sensors (DVS)
is important because of their application in uncontrolled
robotic, automotive, and surveillance applications. This
paper considers the temperature dependence of DVS
threshold temporal contrast (TC), dark current, and back-
ground activity caused by junction leakage. New theory
shows that if bias currents have a constant ratio, then
ideally the DVS threshold TC is temperature independent,
but the presence of temperature dependent junction leakage
currents causes nonideal behavior at elevated tempera-
ture. Both measured photodiode dark current and leakage
induced event activity follow Arhenius activation.This paper
also defines a new metric for parasitic photocurrent quan-
tum efficiency and measures the sensitivity of DVS pixels to
parasitic photocurrent.

Index Terms— CMOS image sensors, dark current, junc-
tion leakage, photocurrent, vision sensor.

I. INTRODUCTION

DYNAMIC vision sensors (DVS) and related sensors
output asynchronous temporal contrast (TC) address

events that signal local pixel-level brightness change [1]–[9].
Because DVS have sparse, quick, and high dynamic range
output, they can overcome the limited dynamic range and
latency-power tradeoff of frame-based cameras, and are being
developed for applications in surveillance, robotics, and sci-
entific imaging [11], [12].

So far, there has been no study of temperature dependence
of DVS sensor variants. Because of the applications of DVS in
uncontrolled environments, the main purpose of this paper is to
model and measure the effect of temperature on DVS. In addi-
tion, unintended photocurrent in MOS transistor source/drain
junctions (parasitic photocurrent) causes event activity in the
presence of strong dc lighting. This effect is closely related to
junction leakage current temperature dependent effects.
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Fig. 1. DVS pixel and operation. (A)–(E) Analog part of original DVS
pixel circuit. The digital circuits that communicate with the peripheral
AER readout circuits are not shown; (F) Principle of operation. For the
DAVIS240C, C1 = 130 fF, and C2 = 6 fF (C1/C2 = 22). For the DVS128,
C1 = 467 fF and C2 = 24 fF (C1/C2 = 20). (Adapted from [1]).

This paper is organized as follows. Section II reviews
DVS pixel circuit operation. Section III models the effects
of temperature and parasitic photocurrent on the DVS pixel.
Section IV compares measurements with theory. Section V
concludes the paper.

II. DVS PIXEL CIRCUIT

The analog part of the original DVS pixel circuit (Fig. 1)
consists of six stages: part A is a continuous-time photore-
ceptor circuit that transduces from a photocurrent (plus dark
current) Ip + Idark to produce a voltage Vp that logarithmically
increases with light intensity. Part B is a source follower buffer
that isolates the photoreceptor from the next stage. Part C is
a switched-capacitor differencing amplifier that amplifies the
change in log intensity from the value memorized after the
last event was sent. Part D are the two voltage comparators
that detect increases or decreases in log intensity that exceed
threshold values. Part E generates the reset pulse, including
a refractory period, when the pixel receives row and column
acknowledge signals RA and CA. Part F shows the principle
of operation: Reset momentarily connects switch Mr , which
balances circuit C and memorizes Vsf across C1. In response
to a change in the continuous-time logarithmic photoreceptor

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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where Lsig is the actual incident radiance signal and Ldark is the black level.
Similar to standard image sensors, the black level is defined as the dark current-
equivalent incident radiance, which is exponentially sensitive to temperature [32]
and effectively limits the dynamic range of the sensor [10].

More precisely, as the pixel bandwidth is mainly limited by the first 3 stages
of the analog circuit [3,5,8,9,23,30], event cameras effectively measure changes in
the low-pass-filtered/motion-blurred effective log-radiance logLblur . This explains
the discussed motion blur of events and event sensor dynamic performance limit.

We accurately model the band-limiting behavior of the pixel with a unity-
gain 4th-order Non-Linear Time-Invariant (NLTI) Low-Pass Filter (LPF) in
state-space form, with input u = logL, state x = [ @ log Lp/@t logLp logLsf logLdi↵ ]>

and output y = [ logLsf logLdi↵ ]>, as follows:

ẋ(t) = A (u(t)) x(t) +B (u(t)) u(t)

y(t) = C x(t)
, (6)

where A(u) =
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Specifically, the pixel bandwidth model is formed by a cascade of:

1. A unity-gain 2nd-order NLTI LPF, with input logL, state [ @ log Lp/@t logLp ]>

and output logLp , that models the transient response of the logarithmic
photoreceptor [3,5,8,9,23,24,30]. Similar to its Linear Time Invariant (LTI)
counterpart, this 2nd-order filter is characterized by its Damping Ratio ⇣ and
Natural Angular Frequency !n. However, they are not constants, but complex
non-linear functions of its input [3,5,23,24] (more details in the supplement).
The bandwidth of this filter is mostly proportional to the exponential of its
input expu = L, which explains the susceptibility to motion blur under
low-light. However, black level Ldark limits the minimum pixel bandwidth.

2. A unity-gain 1st-order LTI LPF, with input logLp and state/output logLsf ,
that models the transient response of the source follower buffer [9,23,30]. It
is characterized by its constant bandwidth/Cutoff Angular Frequency !c,sf ,
that is proportional to the source follower buffer bias current Isf (Fig. 3) [23].

3. Another unity-gain 1st-order LTI LPF, with input logLsf , state/output
logLdi↵ and cutoff angular frequency !c,di↵ > !c,sf [23], that models the
transient response of the differencing amplifier [23,30].

We also model the steady-state behavior of the differencing amplifier reset mech-
anism as a reset of the amplifier LPF state/output logLdi↵ to its input logLsf ,
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Threshold-Normalized
Total Variation Loss
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where the state transition matrix '(m,n) =
Qn�m

j=1 Ad[n� j].
As the linearized, thus discretized, model is asymptotically stable, the mag-

nitude of eigenvalues of Ad[k], for all k, must be smaller than 1. This entails
that limk�k0!1 '(k0, k) = 0. Thus, for a sufficiently long numerical integration
time interval (tk0 , tk], y[k] can be approximated as the zero-state response of the
model, which is just a weighted sum of past & present inputs u between k0 & k:

y[k] ⇡
kX

i=k0

w[i] u[i] ⇡
kX

i=k0

ŵ[i] u[i] , (10)

where w[i] =

8
>><

>>:

Cd'(k0 + 1, k)Bd[k0] , if i = k0

Cd

⇣
'(i+ 1, k)Bd[i] + '(i, k) eBd[i� 1]

⌘
, if i = k0 + 1, . . . , k � 1

Cd
eBd[k � 1] , if i = k

ŵ[i] = w[i]↵
kX

j=k0

w[j] ,

and ↵ denotes Hadamard/element-wise division. It can be shown that limk�k0!1Pk
i=k0

w[i] = 1. Thus, we use the sum-normalized weights ŵ[i] in practice, as
they are corrected for the bias due to a finite integration interval (tk0 , tk]. In
general, these weights tend to be larger for larger input (i.e. higher effective
log-radiance) samples with timestamps closer to the output timestamp tk.

Importance Sampling. Often times, we are interested in computing logLblur

at some desired timestamp tk, given only a function for sampling inputs u =
logL and a fixed sampling budget. To this end, we propose to infer the optimal
input sample timestamps, represented by the random variable Ti 2 (�1, tk], by
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Synthesis manner, with a few exceptions. Specifically, we apply our training
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losses on the predicted motion-blurred effective log-radiance log L̂blur , which was
synthesized from NeRF renders L̂ using the proposed numerical solution to the
pixel bandwidth model (Eqs. (7) and (10)) with importance sampling (Eq. (11)).

Moreover, we adopt a Huber -norm (� = 1) variant of the threshold-normalized
difference loss `di↵ (Eq. (3)), which is less sensitive to outliers, with weight �di↵ .
We also propose the threshold-normalized total variation loss `tv , as a replace-
ment for the target-normalized gradient loss `grad (Eq. (4)), with weight �tv .

Fundamental Limitations. When the black level Ldark is unknown, the inci-
dent radiance signal Lsig and Ldark cannot be unambiguously disentangled from
just the observation of effective radiance L = Lsig +Ldark given by events. Thus,
we can only reconstruct a NeRF with volume renders L̂ that represent predicted
effective radiance, not predicted incident radiance signal as suggested by Robust
e-NeRF. This is enabled by the assumption that the temperature of the event
camera remains effectively constant over the entire duration of the given event
steam, so that the dark current & thus black level remains effectively stationary.

Furthermore, as the pixel bandwidth depends on the absolute effective radi-
ance L, the predicted effective radiance L̂ is theoretically gamma-accurate (i.e.
gamma correction of L̂ is unnecessary), assuming known pixel bandwidth model
parameters, contrary to what is suggested by Robust e-NeRF. However, in prac-
tice, L̂ is generally only gamma-accurate if the L associated to the events has a
significant impact on the pixel transient response. In other words, the gamma-
accuracy of L̂ greatly depends on the severity of event motion blur, hence camera
speed, scene illumination, scene texture complexity, camera used and its settings.

Threshold-Normalized Total Variation Loss. This loss penalizes the mean
contrast threshold C̄ = 1

2 (C�1+C+1) normalized total variation of the predicted
motion-blurred effective log-radiance log L̂blur , on a subinterval (tstart , tend ] sam-
pled between the interval (tref , tcurr ] given by an event, as follows:

`tv (e) =

�����
� log L̂blur

C̄

����� , (12)

where � log L̂blur := log L̂blur (u, tend)� log L̂blur (u, tstart).
Similar to `grad (Eq. (4)), this loss acts as a smoothness constraint for reg-

ularization of textureless regions in the scene. However, it imposes a stronger
bias to enforce the uniformity of log L̂blur between event intervals, which greatly
helps with reconstructing large uniform patches. It can also effectively generalize
to arbitrary threshold values due to the normalization, similar to `di↵ (Eq. (3)).

Joint Optimization of Pixel Bandwidth Model Parameters. Our method
does not strictly rely on the pixel bandwidth model parameters ⌦ to be known
as a priori, as it generally supports their joint optimization with NeRF param-
eters ⇥. However, their prior knowledge generally facilitates a more accurate
reconstruction. The parameters ⌦, which include the parameters of non-linear
damping ratio function ⇣ & natural angular frequency function !n, and angular
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Table 1: Upper bound perfor-
mance without event motion blur

Method PSNR " SSIM " LPIPS #

E2VID + NeRF 19.49 0.847 0.268

Robust e-NeRF 28.48 0.944 0.054

Deblur e-NeRF 29.43 0.953 0.043

Table 2: Quantitative results of the real exps.

08_peanuts_running 11_all_characters

Method
PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 14.85 0.690 0.595 13.12 0.695 0.627

Robust e-NeRF 18.00 0.677 0.507 15.91 0.677 0.552

Deblur e-NeRF 18.27 0.695 0.503 16.53 0.710 0.511

Table 3: Effect of camera speed. †Trained with 1/8⇥ the batch size of baselines.

v = 0.125⇥ v = 1⇥ v = 4⇥
Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 18.58 0.849 0.259 18.85 0.839 0.278 17.82 0.804 0.328
Robust e-NeRF 28.31 0.943 0.050 26.11 0.924 0.074 22.18 0.861 0.122
Deblur e-NeRF† 28.71 0.948 0.048 28.41 0.947 0.049 27.48 0.939 0.061

Table 4: Effect of scene illuminance. †Trained with 1/8⇥ the batch size of baselines.

Esc = 100 000lux Esc = 1 000lux Esc = 10lux

Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF 19.27 0.846 0.268 18.85 0.839 0.278 17.24 0.804 0.354
Robust e-NeRF 27.62 0.942 0.055 26.11 0.924 0.074 22.72 0.870 0.129
Deblur e-NeRF† 28.73 0.948 0.047 28.41 0.947 0.049 28.62 0.935 0.059

Table 5: Collective effect of camera speed and scene illuminance. †Trained with 1/8⇥
the batch size of baselines.

v = 0.125⇥, Esc = 100 000lux v = 1⇥, Esc = 1 000lux v = 4⇥, Esc = 10lux

Method
Opt.

Cp & ⌧
Opt.

⌦ PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � � 19.19 0.844 0.281 18.85 0.839 0.278 15.37 0.799 0.436

⇥ � 28.27 0.944 0.057 26.11 0.924 0.074 18.42 0.814 0.255
Robust e-NeRF X � 28.28 0.944 0.051 26.31 0.923 0.075 18.51 0.812 0.254

⇥ ⇥ 29.00 0.950 0.043 28.41 0.947 0.049 26.15 0.904 0.134
Deblur e-NeRF

†
⇥ X 28.19 0.943 0.046 26.07 0.930 0.067 25.59 0.896 0.156

Effect of Camera Speed. To investigate the effect of event motion blur due
to high-speed camera motion, we evaluate all methods on 3 sets of sequences
simulated with camera speeds v that are 0.125⇥, 1⇥ & 4⇥ of the default setting,
respectively. As event motion blur may lead to a significant “loss or introduction
of events” (Sec. 1), we also quantify the average number of events relative to
that of its corresponding blur-free sequence, across all sequences in the set. This
translates to 93.36%, 100.95% & 95.21% for v = 0.125⇥, 1⇥ & 4⇥, respectively.

The quantitative results in Tab. 3 clearly underscores the significance of in-
corporating a pixel bandwidth model, as our method significantly outperforms
all baselines, especially under high-speed motion, despite being trained with
1/8⇥ the batch size of baselines. The results also display our robustness to event
motion blur, as our performance remains relatively unperturbed under varying
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Robust e-NeRF 27.62 0.942 0.055 26.11 0.924 0.074 22.72 0.870 0.129
Deblur e-NeRF† 28.73 0.948 0.047 28.41 0.947 0.049 28.62 0.935 0.059

Table 5: Collective effect of camera speed and scene illuminance. †Trained with 1/8⇥
the batch size of baselines.

v = 0.125⇥, Esc = 100 000lux v = 1⇥, Esc = 1 000lux v = 4⇥, Esc = 10lux

Method
Opt.

Cp & ⌧
Opt.

⌦ PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #

E2VID + NeRF � � 19.19 0.844 0.281 18.85 0.839 0.278 15.37 0.799 0.436

⇥ � 28.27 0.944 0.057 26.11 0.924 0.074 18.42 0.814 0.255
Robust e-NeRF X � 28.28 0.944 0.051 26.31 0.923 0.075 18.51 0.812 0.254

⇥ ⇥ 29.00 0.950 0.043 28.41 0.947 0.049 26.15 0.904 0.134
Deblur e-NeRF

†
⇥ X 28.19 0.943 0.046 26.07 0.930 0.067 25.59 0.896 0.156

Effect of Camera Speed. To investigate the effect of event motion blur due
to high-speed camera motion, we evaluate all methods on 3 sets of sequences
simulated with camera speeds v that are 0.125⇥, 1⇥ & 4⇥ of the default setting,
respectively. As event motion blur may lead to a significant “loss or introduction
of events” (Sec. 1), we also quantify the average number of events relative to
that of its corresponding blur-free sequence, across all sequences in the set. This
translates to 93.36%, 100.95% & 95.21% for v = 0.125⇥, 1⇥ & 4⇥, respectively.

The quantitative results in Tab. 3 clearly underscores the significance of in-
corporating a pixel bandwidth model, as our method significantly outperforms
all baselines, especially under high-speed motion, despite being trained with
1/8⇥ the batch size of baselines. The results also display our robustness to event
motion blur, as our performance remains relatively unperturbed under varying
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where Lsig is the actual incident radiance signal and Ldark is the black level.
Similar to standard image sensors, the black level is defined as the dark current-
equivalent incident radiance, which is exponentially sensitive to temperature [32]
and effectively limits the dynamic range of the sensor [10].

More precisely, as the pixel bandwidth is mainly limited by the first 3 stages
of the analog circuit [3,5,8,9,23,30], event cameras effectively measure changes in
the low-pass-filtered/motion-blurred effective log-radiance logLblur . This explains
the discussed motion blur of events and event sensor dynamic performance limit.

We accurately model the band-limiting behavior of the pixel with a unity-
gain 4th-order Non-Linear Time-Invariant (NLTI) Low-Pass Filter (LPF) in
state-space form, with input u = logL, state x = [ @ log Lp/@t logLp logLsf logLdi↵ ]>

and output y = [ logLsf logLdi↵ ]>, as follows:

ẋ(t) = A (u(t)) x(t) +B (u(t)) u(t)

y(t) = C x(t)
, (6)

where A(u) =
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Specifically, the pixel bandwidth model is formed by a cascade of:

1. A unity-gain 2nd-order NLTI LPF, with input logL, state [ @ log Lp/@t logLp ]>

and output logLp , that models the transient response of the logarithmic
photoreceptor [3,5,8,9,23,24,30]. Similar to its Linear Time Invariant (LTI)
counterpart, this 2nd-order filter is characterized by its Damping Ratio ⇣ and
Natural Angular Frequency !n. However, they are not constants, but complex
non-linear functions of its input [3,5,23,24] (more details in the supplement).
The bandwidth of this filter is mostly proportional to the exponential of its
input expu = L, which explains the susceptibility to motion blur under
low-light. However, black level Ldark limits the minimum pixel bandwidth.

2. A unity-gain 1st-order LTI LPF, with input logLp and state/output logLsf ,
that models the transient response of the source follower buffer [9,23,30]. It
is characterized by its constant bandwidth/Cutoff Angular Frequency !c,sf ,
that is proportional to the source follower buffer bias current Isf (Fig. 3) [23].

3. Another unity-gain 1st-order LTI LPF, with input logLsf , state/output
logLdi↵ and cutoff angular frequency !c,di↵ > !c,sf [23], that models the
transient response of the differencing amplifier [23,30].

We also model the steady-state behavior of the differencing amplifier reset mech-
anism as a reset of the amplifier LPF state/output logLdi↵ to its input logLsf ,
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logLdi↵ and cutoff angular frequency !c,di↵ > !c,sf [23], that models the
transient response of the differencing amplifier [23,30].

We also model the steady-state behavior of the differencing amplifier reset mech-
anism as a reset of the amplifier LPF state/output logLdi↵ to its input logLsf ,

Steady-State Model of Differencing Amplifier Reset Mechanism:

and                 .
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at the end of the refractory period (i.e. reference timestamp tref ). These 2 models
allow the motion-blurred effective log-radiance logLblur to be derived as:

logLblur (t) = logLdi↵ (t) + logLdelta(tref ) e
�!c,di↵ (t�tref ) , t � tref , (7)

where logLdelta = logLsf � logLdi↵ .

4.2 Synthesis of Motion-Blurred Effective Log-Radiance

The pixel bandwidth model proposed in Sec. 4.1 provides a means to accurately
synthesize motion-blurred effective log-radiance logLblur , thus simulate event
motion blur, given the pixel-incident log-radiance signal logLsig . However, the
continuous-time and non-linear nature of the model (Eq. (6)) prohibits its direct
computational implementation, for use in a simulator or for NeRF reconstruction
using an Analysis-by-Synthesis framework (Sec. 4.3). A discrete-time counterpart
of the model that operates on discrete-time input samples is necessary.

Discrete-Time Model. Assume the discrete-time sequence of inputs u[k] =
logL[k] is sampled at timestamps tk, where the time intervals between succes-
sive samples �tk = tk+1� tk may possibly be irregular. We derive a discrete-time
model from the continuous-time, non-linear pixel bandwidth model by first lin-
earizing [6] the 4th-order NLTI LPF (Eq. (6)) at different steady-state operating
points (x̄[k], ū[k]) =

⇣
[ 0 u[k+1] u[k+1] u[k+1] ]>, u[k + 1]

⌘
, for each time interval

(tk, tk+1]. Then, we discretize the linearized model assuming First-Order Hold
(FOH) [6] (i.e. piecewise-linear) inputs u. This yields a discrete-time 4th-order
Linear Time-Varying (LTV) LPF, in non-standard state-space form, as follows:

x[k + 1] = Ad[k] x[k] +Bd[k] u[k] + eBd[k] u[k + 1]

y[k] = Cd x[k]
, (8)

where Ad[k] = �[k], Bd[k] = �1[k]� �2[k], eBd[k] = �2[k], Cd = C and:
2
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Numerical Solution. The discrete-time model presented can be directly inte-
grated in an existing event simulator, e.g . ESIM [37] & its improved variant in-
troduced in Robust e-NeRF, to synthesize logLblur & thus simulate event motion
blur (more details in the supplement), assuming some appropriate initial state
x[k0], e.g . the steady-state on the initial input u[k0]. However, this cannot be
done when the appropriate x[k0] is not well defined for an arbitrary logLblur [k]
of interest, e.g . during NeRF reconstruction. We tackle this issue with the (nu-
merical) solution to the transient response of the discrete-time model below:

y[k] = Cd

"
'(k0, k) x[k0] +

k�1X

i=k0

'(i+ 1, k)
⇣
Bd[i] u[i] + eBd[i] u[i+ 1]

⌘#
, (9)
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cutoff frequencies !c,sf and !c,diff (Eq. (6)), depend on the pixel circuit design,
semiconductor manufacturing process & user-defined event camera bias settings.

4.4 Translated-Gamma Correction

To eliminate the unknown black level offset and resolve potential gamma-inacc-
uracies in the predicted effective radiance L̂, we propose a Translated-Gamma
Correction on L̂ post-reconstruction, using a set of reference images, as follows:

L̂sig,corr = b� L̂a � c , (13)

where a, b and c are the correction parameters, via Levenberg-Marquardt non-
linear least squares optimization. The translation/offset correction is done inde-
pendently per color channel to account for channel-varying spectral sensitivities.

5 Experiments

We conduct a series of novel view synthesis experiments, both on synthetic
(Sec. 5.1) and real event sequences (Sec. 5.2), to verify that our method, De-
blur e-NeRF, can indeed directly and effectively reconstruct blur-minimal NeRFs
from motion-blurred events, generated under high-speed or low-light conditions,
using a physically-accurate pixel bandwidth model.

Metrics. We adopt the commonly used PSNR, SSIM [45] and AlexNet-based
LPIPS [52] to evaluate the similarity between the target and translated-gamma-
corrected (Sec. 4.4) synthesized novel views, for all methods in each experiment.

Baselines. We benchmark our method, Deblur e-NeRF, against the state-of-
the-art, Robust e-NeRF [27], and a naïve baseline of E2VID [38] (a seminal
events-to-video reconstruction method) + NeRF [31] (as well as 2 other image
blur-aware baselines in the supplement). The setup of an event motion blur-
aware baseline is hindered by the lack of relevant works. The implementation of
all methods employ a common NeRF backbone [22] to allow for a fair comparison.

Datasets. We perform the synthetic experiments on the default set of sequences
released by Robust e-NeRF, and a novel set similarly simulated on the “Real-
istic Synthetic 360�” scenes [31]. However, our sequences involve event motion
blur due to fast camera motion and/or poor scene illumination. Such sequences
were simulated with our proposed event simulator, which incorporates the pixel
bandwidth model presented in Secs. 4.1 and 4.2 in the improved ESIM [37] event
simulator introduced in Robust e-NeRF. Similar to the sequences in the Robust
e-NeRF synthetic event dataset, the events are generated from a virtual event
camera moving in a hemi-/spherical spiral motion about the object at the origin.

On the other hand, we conduct the real experiments on the 08_peanuts_runn-
ing and 11_all_characters sequences of the EDS dataset [11], which are gener-
ally 360� captures of a table of objects in an office room under moderate lighting.
These sequences were chosen as they involve some high-speed camera motion.
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(b) Significantly motion-blurred events (left), under high speed and low light (right).

(a) Minimally motion-blurred events (left), under low speed and bright light (right).


